51 research outputs found

    Preliminary study on geogenic degassing through the big karstic aquifers of Greece

    Get PDF
    Non-volcanic degassing contributes to the C-cycle by providing on a global scale a significant amount of CO2 emitted through diffuse earth degassing processes (Kerrick et al 1995). Due to the elevated solubility of the CO2 in water, in the areas where high CO2 fluxes directly affect regional aquifers, most of it can be dissolved, transported and released by groundwaters. Therefore, quantification of this contribution to the atmosphere has a substantial implication for modeling the global carbon cycle. According to Chiodini et al. (2000), total dissolved inorganic carbon (TDIC) concentrations and δ13CTDIC values of groundwaters are useful tools to both quantify the geogenic degassing and distinguish the different carbon sources. This approach was proved to be valid for central Italy and can possibly work for continental Greece; due to similar geodynamic history. Greece is considered one of the most geodynamically active regions and is characterized by intense geogenic degassing. The main source of degassing in the Hellenic area is concentrated on hydrothermal and volcanic environments (Daskalopoulou et al., 2019), however, the impact of geogenic CO2 released by tectonically active areas shouldn’t be disregarded. Aim of this work is to quantify the CO2 degassing through aquifers hosted in the carbonate successions in the Hellenic region. 95 karst, thermal and cold waters were collected in the northern and central part of Greece with some of which being characterized by bubbling of CO2-rich gases. Results show that karst waters have a typical Ca-HCO3 composition. Thermal and cold waters show two different compositions: some samples are characterized by Ca-HCO3 composition suggesting the presence of a carbonate basement, whilst others have a prevailing Na-HCO3 composition. On the basis of TDIC concentrations and δ13CTDIC values, the springs are divided into two groups. The first group includes karst waters and some of thermal waters and is characterized by low TDIC concentrations and negative δ13CTDIC values. This group shows no evidence of deep CO2 contributions, whereas the carbon of these waters derives from dissolution of carbonate minerals by organic derived CO2. Remaining samples belong to the second group and present intermediate to high TDIC concentrations and δ13CTDIC values, indicating a possible input of inorganic CO2. Some of these springs are characterized by gas bubbling at discharge, suggesting an extensive degassing

    Estimation of CO2 release from thermal springs to the atmosphere

    Get PDF
    Introduction Geodynamically active regions have long been recognized as areas of anomalous Earth degassing [Irwin and Barnes, 1980]. Areas found at plate boundaries are characterized by seismic, volcanic and geothermal activity as well as ore deposition. These processes are enhanced by the circulation of hydrothermal fluids in the crust, which transport volatiles from the deep crust or mantle to the surface [King, 1986]. Kerrick and Caldera, [1998], were the first to indicate the significant contribution of the CO2 degassing by extensional tectonic and hydrothermal activity in metamorphic belts during the Phanerozoic. Moreover, further studies concerning gas emissions from diffuse degassing tectonic structures on various geological regimes suggested in their majority elevated CO2 concentrations [Klusman, 1993]. In fact, it is worth noting that the estimated global hydrothermal CO2 flux from subaerial geothermal environments can be comparable to that of direct volcanic discharges [Kerrick et al., 1995; Seward and Kerrick, 1996]. Study Area The back-arc geothermal fields of Greece include, among others, the Tertiary sedimentary basins of both Sperchios Basin and north Euboea, which are located in central Greece. Their tectonic activity contributes in crust thinning [Papadakis at al., 2016 and references therein] and elevated heat flow values [Fytikas and Kolios, 1979]. These geothermal anomalies due to the tectonic activity and the geological and volcanic regime are expressed as hot springs (Ypatis, Psoroneria, Thermopyles and Kamena Vourla in Sperchios Basin and Edipsos and Ilion in north Euboea). Tectonics of central Greece seems to be of particular interest as major fault structures are found in the area. Sperchios Basin was formed through the activity of WNW-ESE trending faults [Georgalas and Papakis, 1966; Marinos et al., 1973], whilst the Sperchios tectonic graben itself is considered to be the extension of the North Anatolia strike-slip fault. Moreover, in the north Euboean Gulf, the major fault structures are those of the Atalanti Fault Zone (AFZ) that consist of several segments of normal faults, trending about NW-SE [Pavlides et al., 2004]. Materials and Methods Six groups of springs (Ypatis, Psoroneria, Thermopyles, Kamena Vourla, Edipsos and Ilion) were investigated in this study. Bubbling gases were sampled using an inverted funnel positioned above the bubbles and stored in glass flasks equipped with two stopcocks until analysis. Samples for dissolved gas analyses were collected in glass vials and were sealed underwater. In the laboratory, the concentrations of He, H2, H2S, O2, N2, CO2 and CH4, on the samples were analysed by an Agilent 7890B gas chromatograph with Ar as carrier. The total CO2 emitted through bubbling was measured at 6 different pools (Psoroneria, Psoroneria 2,Thermopyles, Leonidas, Kamena Vourla and Ilion), whereas at other springs (Koniavitis-Sperchios Basin, Edipsos-Damaria and Edipsos-Thermopotamos) an estimation of the release was made by visual inspection. The CO2 fluxes were measured using the floating chamber method [Mazot and Bernard, 2015] that was equipped with a portable fluxmeter (WEST Systems, Italy) based on the accumulation chamber method as suggested by Chiodini et al., [1998]. The flux data were processed with both the Graphical Statistical Approach (GSA) and the Stochastic Simulation Approach (SSA), with the latter being based on the algorithm of sequential Gaussian simulation [Deutsch and Journal 1998; Cardellini et al., 2003]. Zonal Statistics on the final CO2 flux maps was obtained using the ArcMap 10.3 (ESRI) Spatial Analyst tool and were used to estimate the total CO2 output to the atmosphere. Results and Conclusions Carbon dioxide is the prevailing gas species for the great majority of the under investigation sites, with only gases collected in the area of Kamena Vourla (Kamena Vourla and Koniavitis) being rich in N2. The total bubbling CO2 emission from the pools to the atmosphere ranged from 314 to 44,800 g/m2/day. At sites with greater surfaces, the CO2 release was estimated after performing direct measurements (28-Thermopyles, 74-Psoroneria) with the most elevated values being found in the areas of Thermopyles and Psoroneria (1 and 2 t/d, respectively) (Tab. 1); the maps were drawn following the SSA (Figure 1). The outgoing channels of the springs showed an elevated flow (> 250 l/s) of gas-charged water (> 15 mmol/l of dissolved CO2). Even though no bubbling was visible along the stream, the dissolved CO2 content sampled at different distances from springs of Psoroneria and Thermopyles, decreased up to an order of magnitude after few hundreds of metres, indicating an evident and intense, although not visible, CO2 degassing versus the atmosphere. Physico-chemical parameters (temperature and pH) along the outlet channels were also measured at the same sampling points showing correlations (negative in terms of temperature; T decreased from 33.1 to 30.3 and 40.8 to 39 °C, respectively and positive in terms of pH; pH increased from 6.11 to 7.05 and 6.05 to 7.70, respectively) with the distance. The CO2 output of the outgoing channels to the atmosphere was quantified considering thedifference between the initial and the final content of the dissolved CO2 as well as the water flow, obtaining values of > 10 t/d for Thermopyles and ~9 t/d for Psoroneria. Estimations were also made at Ypatis, Kamena Vourla, Koniavitis and Edipsos, where the mean values reached 1 t/d of CO2 for each spring. The obtained CO2 released from the bubbling pools to the atmosphere was directly compared with the one estimated from the outgoing channels (Tab. 1). The degassing along the outflow channel was almost always higher than the corresponding bubbling pool, sometimes even an order of magnitude, suggesting that most of the degassing is “hidden”. For each site the amount of CO2 released versus the atmosphere was calculated as (Figure 2): ΦtotCO2 = Φpool + Φstream The total CO2 released to the atmosphere as estimated for the study area is at ~ 30 t/d, with the major contribution deriving from the degassing along the outflow channels of the thermal springs. Such output is comparable and sometimes higher than that of each single active volcanic system along the South Aegean Volcanic Arc (15 - 38 t/d) and highlights the importance of “hidden” degassing along CO2 - oversaturated streams

    Risks related to gas manifestations in the Hellenic territory

    Get PDF
    Like other geodynamically active areas, Greece is affected by a large number of geogenic gas manifestations. These occur either in form of point sources (fumaroles, mofettes, bubbling gases) or as diffuse emanations. We produced a catalogue of the geogenic gas manifestations of Greece also considering few literature data. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Geogenic gases, apart from having important influences on the global climate, could have strong impact on human health. Gas hazard is often disregarded because fatal episodes are often not correctly attributed. Geodynamic active areas release geogenic gases for million years over wide areas and the potential risks should not be disregarded. A preliminary estimation of the gas hazard has been made for the last 20 years considering the whole population of Greece. In this period at least 2 fatal episodes with a total of 3 victims could be certainly attributed to CO2. This would give a risk of 1.310-8 fatality per annum. Such value, probably underestimated, is much lower than most other natural or anthropogenic risks. Nevertheless this risk, being unevenly distributed along the whole territory, should not be overlooked and better constrained in areas with high density of gas manifestations and high soil gas fluxes

    Microbial impact on the isotope composition of methane in both thermal and hyperalkaline waters of central Greece

    Get PDF
    Introduction The different origins of methane can be subdivided in biogenic (either directly produced by microbial activity or deriving by decay of organic matter at T > 150\ub0C) and abiogenic (from pure inorganic reactions). Among the latter, one of the most debated origins comes from serpentinization processes of ultramafic rocks in ophiolitic sequences at low temperatures (T < 80 \ub0C). Moreover, further secondary processes (diffusion, inorganic or microbial oxidation, etc.) may also contribute and thus mask the original chemical and/or isotope composition. Primary and secondary processes acting on CH4 can be recognised mainly through its isotope (d13C and d2H) composition and the ratio between CH4 and C2+C3 light hydrocarbons [Bernard et al. 1978; Schoell 1980]. Microorganisms may be involved in the methane cycle not only as active producers but also as consumers. Methane oxidizing bacteria (or methanotrophs) are microorganisms with the ability to use methane as the only source of carbon for energy and biomass production. Methanotrophs are ubiquitous and play an important role in the global carbon cycle, acting as a natural filter between the subsoil and the atmosphere. They were isolated from several environments such as soils, wetlands, freshwater, marine sediments, water columns, groundwater, rice paddies, and peat bogs [Murrell and Jetten, 2009]. Some species were adapted also at extreme environments characterized by high temperature (up to 81.6 \ub0C), extremely low or high pHs (1.5-11) or even anaerobic conditions. Due to the fact that methanotrophs metabolize preferentially light isotopes, biologic methane oxidation brings sometimes to extremely positive d13C and d2H values [Cadieux et al., 2016]. The Greek territory belongs to the geodynamically active Alpine-Himalayan orogenic belt. As such, it shows intense seismic activity, active volcanic systems and areas of enhanced geothermal fluxes. One of these areas is the Sperchios Basin and the northern part of Euboea Island in central Greece, where thermal manifestations are widespread [D\u2019Alessandro et al., 2014]. The complex geology of Greece includes also two important parallel running ophiolitic belts, with the Othrys Massif (central Greece) belonging to the westernmost of them. In and around this wide ophiolite outcrop, some cold hyperalkaline and some hypothermal (T < 30\ub0C) alkaline waters are present. In the present paper we discuss data about chemistry and methane isotope composition of bubbling or dissolved gases in both thermal springs and hyperalkaline springs of Central Greece. Sampling and Analytical Methods Free bubbling gas samples were taken using an inverted funnel. All free gas samples were stored in Pyrex bottles with two vacuum stopcocks. Samples for dissolved gas analyses were collected in glass vials sealed underwater. In the laboratory, the chemical analyses were carried out by gaschromatography (Agilent 7890B GC System) using Ar as the carrier gas. Dissolved gases were extracted after equilibrium was reached at constant temperature with a host-gas (high-purity argon) injected in the sample bottle. The measurement precision was better than \ub15% for common gases and \ub110% for trace gases such as the alkanes. The chemical composition of the dissolved gas phase was obtained from the gas-chromatographic analyses taking into account the solubility coefficients (Bunsen coefficient \u201c\u3b2\u201d, ccgas/mlwater STP) of each gas specie, the volume of gas extracted and the volume of the water sample (details in Capasso and Inguaggiato, [1998] and Liotta and Martelli, [2012]). Starting from the total amount of dissolved gases (ccSTP/L) we calculated the relative abundances for every single gas species in equilibrium with the dissolved gas phase and expressed the analytical results in \u3bcmol/mol of gas at atmospheric pressure, allowing the comparison of dissolved gases with free gases. Carbon and hydrogen isotope compositions of CH4 were measured using a Thermo TRACE GC and a Thermo GC/C III interfaced to a Delta Plus XP gas source mass spectrometer. 13C/12C ratios are reported here as d13C values (\ub10.1 \u2030) with respect to the V-PDB standard. 1H/2H ratios are reported here as d2H values (\ub12 \u2030) with respect to the V-SMOW standard. The oxygen and hydrogen isotopic compositions of water were analysed on unfiltered samples with the use of Analytical Precision AP 2003 and FinniganMAT Delta Plus IRMS devices, respectively. The isotope ratios are expressed as the deviation per mil (\u3b4\u2030) from the reference V-SMOW. The uncertainties (\ub11\u2030 were \ub10.1% for \u3b418O and \ub11% for \u3b42H. Results Five thermal springs, with temperatures from 33 to 80\ub0C, were sampled in the study area. All show elevated fluxes of bubbling gases whose prevailing species are either CO2 or N2. Methane concentrations range from 27 to 4000 \u3bcmol/mol, whilst the isotope composition of CH4 covers a wide range with d13C values ranging from -21.7 to +16.9\u2030 and d2H values ranging from -124 to +370\u2030. Seven alkaline hypothermal waters were collected in five areas (Amplas, Platystomo, Kaitsa, Smokovo and Soulanta) while 10 hyperalkaline waters in two areas (Archani and Ekkara); all samples were collected from different springs and wells and some of the sites presented bubbling. All samples present low concentrations of H2 (from <2 to 2500 \u3bcmol/mol), CO2 (up to 26,000 but generally below 1000 \u3bcmol/mol) and O2 (up to 16,000 but generally below 3000 \u3bcmol/mol). Gases in alkaline waters (pH <10) are in their majority dominated by CH4 (from 128,000 to 915,000 \u3bcmol/mol). Hyperalkaline (pH > 11) waters are N2 dominated (from 727,000 to 977,000 \u3bcmol/mol) and have CH4 concentrations from 11,500 to 279,000 \u3bcmol/mol. Also all these samples display a wide range of isotope compositions of CH4 (d13C from -74.5 to -14.5 \u2030 and d2H from -343 to -62 \u2030). Discussion Thermal springs Methane in most of the bubbling gases found in the thermal waters of Greece display a small range in isotope composition close to -21\u2030 for carbon and to -130\u2030 for hydrogen [Daskalopoulou et al., 2018] and plot in the middle of the field of volcanic and geothermal systems (Figure 1). In the study area, only the hottest (Edipsos) of the thermal manifestations displays similar values. All the remaining samples fit a methane oxidation trend reaching extremely positive values (Figure 1). If we consider the lowest values as the deep hydrothermal marker the obtained \u394H/\u394C values range between 5 and 13 which are close to those typical of microbially driven oxidation [Coleman et al., 1981]. Although the outlet temperature of the hottest manifestations is at the upper limit for methanotrophic microrganisms [Sharp et al., 2014], we can hypothesize that environmental conditions are not favourable for their survival at this site. On the contrary, methanotrophs can thrive in the sites characterized by lower temperatures (33-65 \ub0C), strongly consuming methane. The most positive values were measured at Psoroneria and indicate a very high consumption fraction. Considering again the values of Edipsos as the deep hydrothermal marker, a Rayleigh fractionation modelling in a closed system and kinetic fractionation factors for microbial oxidation [Coleman et al., 1981] we estimate a consumption of more than the 75% of the initial CH4. Alkaline and hyperalkaline waters Alkaline waters present mostly isotope values for CH4 compatible with a biogenic origin (d13C from - 62.0 to -37.5 \u2030 and d2H from -247 to -154 \u2030). Only the sample of Kaitsa falls above the biogenic field, indicating possible fractionation due to CH4 oxidation (Figure 2). Most of the hyperalkaline waters have CH4 isotope values compatible with an abiogenic origin through serpentinization processes (Figure 2). But some of the CH4 collected in the hyperalkaline waters show values falling in the biogenic field, with at points, very negative d13C values (< -70\u2030). Methanogens were found also in other hyperalkaline waters taking advantage of the presence of sometimes very high hydrogen concentrations [Woycheese et al., 2015; Miller et al., 2018]. Also methanotrophs were rarely found in hyperalkaline waters [Woycheese et al., 2015; Miller et al., 2018] and their presence may justify the most positive values found in the study area (Figure 2)

    Geochemistry of Gas Manifestations in Greece

    Get PDF
    Κατά την περίοδο 2004 με 2017, συλλέχθηκαν περισσότερα από 350 δείγματα ελεύθερων και διαλελυμένων αερίων στην Ελλάδα. Μαζί με αυτά συνυπολογίστηκαν και βιβλιογραφικά δεδομένα. Για καλύτερη κατανόηση της μελέτης, η χώρα διαιρέθηκε σε τέσσερις γεωλογικές ενότητες (Εξωτερικές [EH] και Εσωτερικές [IH] Ελληνίδες, Ελληνική Ενδοχώρα [HH] και ενεργό ηφαιστειακό τόξο [VA]) και με βάση τον συγκεκριμένο διαχωρισμό ερευνήθηκε η πιθανή σχέση της κύριας γεωχημικής σύστασης των αερίων με τα διάφορα γεωλογικά και γεωδυναμικά καθεστώτα των περιοχών δειγματοληψίας. Τα δείγματα αναλύθηκαν για την χημική (O2, N2, CH4, CO2, He, Ne, Ar, H2, H2S και C2-C6 υδρογονάνθρακες) και ισοτοπική τους (R/RA, δ13C-CO2, δ13C-CH4 and δ2H-CH4) σύσταση. Οι συγκεντρώσεις κυμαίνονταν από 0.10 έως 3370 μmol/mol για το He, 600 έως 995,000 μmol/mol για το N2, 0.60 έως 915,000 μmol/mol για το CH4 και 17 έως 1,000,000 μmol/mol για το CO2, ενώ οι ισοτοπικές τους τιμές από 0.01 έως 7.10 R/RA, -29.91 έως +6.00 vs. V-PDB για το δ13C-CO2, -79.8 έως +45.0‰ vs. V-PDB για το δ13C-CH4 και -311 έως +301‰ vs. V-SMOW για το δ2H-CH4. Λαμβάνοντας υπ’όψιν τις τιμές των R/RA και 4He/20Ne, υπολογίστηκε η συνεισφορά της ατμόσφαιρας, του μανδύα και του φλοιού για το He. Η μεγαλύτερη μανδυακή συνεισφορά (έως και 90%) βρέθηκε στο VA, ενώ η χαμηλότερη (0-20%) στο EH. Η συνεισφορά της ατμόσφαιρας ήταν σχετικά αμελητέα. Σύμφωνα με την γεωγραφική κατανομή των αερίων, είναι εμφανές πως το R/RA αυξάνεται σε περιοχές που χαρακτηρίζονται από: i) λεπτό φλοιό; ii) αυξημένες τιμές ροής θερμότητας; iii) πρόσφατη (Πλειστόκενο-Τεταρτογενής) ηφαιστειακή δραστηριότητα; και iv) τοπικά εκτατικά ή διασταλτικά ρήγματα. Οι υψηλότερες τιμές βρέθηκαν κατά μήκος του VA και οι χαμηλότερες στις EH. Επιπλέον, με βάση τις τιμές των CO2/3He και δ13C-CO2, υπολογίστηκε η συνεισφορά των Ιζηματογενών, Μανδυακών και Ασβεστολιθικών end-members του CO2. Οι πλειοψηφία των δειγμάτων παρουσίασε μία κυρίως ασβεστολιθική σύσταση για τον C, ενώ μόνο λίγα δείγματα έδειξαν μανδυακή σύσταση. Παρ’όλα αυτά, με τα υπάρχοντα δεδομένα, είναι αδύνατος ο διαχωρισμός του CO2 που προέρχεται από τους ασβεστολίθους του φλοιού και από εκείνους της υπό βύθισης πλάκας. Επί προσθέτως, λόγω της σύνθετης γεωδυναμικής ιστορίας, η ισοτοπική σύσταση του μανδυακού C θα μπορούσε να είναι επηρεασμένη από μετασωμάτωση συσχετιζόμενη με την βύθιση της πλάκας, όπως συμβαίνει και στην γειτνιακή περιοχή της Ιταλίας, κάνοντας την ισοτοπική του σύσταση πιο θετική. Σε τέτοια περίπτωση, η συνεισφορά του μανδύα θεωρείται ότι έχει υποτιμηθεί. Κάποια δείγματα παραθέτουν πολύ χαμηλες τιμές CO2/3He και δ13CO2 λόγω απώλειας του CO2, η οποία έχει προκληθεί είτε από διάλυση του CO2 σε υπόγεια νερά μικρού βάθους είτε από την καθίζηση του ασβεστίτη που λαμβάνει μέρος στε ορισμένες θερμές πηγές. Από την άλλη μεριά, οι τιμές του CH4/(C2H6+C3H8) (από 1.5 έως 93,200) σε συνδιασμό με τα ισοτοπικά χαρακτηριστικά του CH4, συνιστούν πως οι ελαφριές αλκάνες προέρχονται από διαφορετική αρχική πηγή και αρκετές φορές επηρεάζονται από δευτερογενή διαδικασίες. Στα αέρια των EH παρατηρείται μια σχετικά αποκλειστική βιοτική, κυρίως μικροβιακή, προέλευση για το CH4. Τα αέρια των ψυχρών πηγών των IH έχουν κυρίως θερμογενή προέλευση, αν και κάποια από αυτά συνδέονται με ηπειρωτικές σερπεντινιώσεις και μοιάζει να έχουν αβιοτική προέλευση. Το CH4 στις θερμές πηγές των IH, HH and VA και στα φουμαρολικά αέρια του VA φαίνεται να είναι κυρίως αβιοτικό, αν και τα χημικά και ισοτοπικά χαρακτηριστικά του μοιάζει να έχουν επηρεαστεί από δευτερογενή οξείδωση του CH4 θερμογενούς προέλευσης. Τέλος, κάποια από τα δείγματα παρουσιάζουν αρκετά θετικές ισοτοπικές τιμές (δ13C-CH4 έως +45.0‰ vs. V-PDB και δ2H-CH4 έως +301‰ vs. V-SMOW) πιθανότατα λόγω οξείδωσής τους από μικρόβια.In the period from 2004 to 2017, more than 350 samples of free and dissolved gases were collected along the whole Hellenic area. Some literature data have also been taken into consideration. For a better comprehension of this study, Greece was subdivided in four geologic units (External [EH], Internal [IH] Hellenides, Hellenic Hinterland [HH] and active Volcanic Arc [VA]) and based on that division, I investigate the possible relationship of the main geochemical composition of the gases with the different geological and geodynamical settings of the sampling sites. Samples have been analysed for their chemical (O2, N2, CH4, CO2, He, Ne, Ar, H2, H2S and C2-C6 hydrocarbons) and isotope (R/RA, δ13C-CO2, δ13C-CH4 and δ2H-CH4) composition. The concentrations range from 0.10 to 3370 μmol/mol for He, 600 to 995,000 μmol/mol for N2, 0.60 to 915,000 μmol/mol for CH4 and 17 to 1,000,000 μmol/mol for CO2, whereas the isotope values range from 0.01 to 7.10 for R/RA, -29.91 to +6.00 vs. V-PDB for δ13C-CO2, -79.8 to +45.0‰ vs. V-PDB for δ13C-CH4 and -311 to +301‰ vs. V-SMOW for δ2H-CH4. Considering the R/RA and 4 He/20Ne ratios the atmospheric, mantle and crustal contributions for He have been calculated. The highest mantle contribution (up to 90%) is found in the VA, whereas the lowest in continental Greece (0-20%). Atmospheric contribution is mostly negligible. Taking into consideration the geographical distribution of the gases, it is evident that the R/RA increases in areas characterised by: i) thin crust; ii) elevated heat flow values; iii) recent (PleistoceneQuaternary) volcanic activity; and iv) deep routed extensional or transtensional regional faults. The highest values are therefore found along VA and the lowest in EH. Furthermore, based on the CO2/3He and δ13C-CO2 values, the contribution of Sediment, Mantle and Limestone endmembers for CO2 was determined. The majority of the collected samples present a prevailing limestone C component and only few samples have a prevailing mantle C component. However, with the present data, it is not possible to distinguish CO2 deriving from crustal and slab-related limestones. Additionally, due to the complex geodynamic history, the mantle C isotope composition could be affected by subduction-related metasomatism and, similarly to the nearby Italian area, the C isotope composition could be more positive. In this case, the mantle contribution is probably underestimated. Some samples display very low CO2/3He and δ13CO2 values due to the CO2 loss caused either by dissolution of CO2 in shallow groundwater or by the calcite precipitation that is taking place in most of the thermal springs. On the other hand, the CH4/(C2H6+C3H8) ratios (from 1.5 to 93,200) coupled with CH4 isotopic features, suggest the light alkanes derive from a different primary source and are sometimes affected by secondary processes. An almost exclusive biotic, mainly microbial, origin of CH4 can be attributed to EH gases. Cold gases at IH have mainly a thermogenic origin, although some gases connected to continental serpentinization may have an abiogenic origin. Methane in gases bubbling in thermal waters of IH, HH and VA and fumarolic gases of the VA seem to have a prevailing abiogenic origin, although their chemical and isotopic characteristics may have been produced by secondary oxidation of thermogenic CH4. Finally, in some of the sampled gases, the isotopic values are extremely positive (δ13C-CH4 up to +45.0‰ vs. V-PDB and δ2H-CH4 up to +301‰ vs. V-SMOW) most probably caused by microbial oxidation

    Gas manifestations of Greece: Catalogue, geochemical characterization and gas hazard definition

    Get PDF
    Like other geodynamically active areas, Greece is affected by a large number of geogenic gas manifestations. These occur either in form of point sources (fumaroles, mofettes, bubbling gases) or as diffuse emanations. We produced a first catalogue of the geogenic gas manifestations of Greece also considering few literature data. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Most of the sampled gas manifestation are found along the South Aegean active volcanic arc (32 sites) and in the majority they belong to the CO2 dominated group. Very few gas manifestations, N2- or CH4- dominated, are found along the most external units of the Hellenides orogen (Apulia domain - W and SW Greece), where generally compressive or transpersive tectonic prevails. On the contrary, gas manifestations (mainly CO2- dominated) are widespread along northern Greece (28 sites) and along Sperchios basin - north Evia graben (12 sites) which are characterised by extensional tectonic. Geogenic gases, apart from having important influences on the global climate, could have strong impact on human health. Gas hazard is often disregarded because fatal episodes are often not correctly attributed. Geodynamic active areas release geogenic gases for million years over wide areas and the potential risks should not be disregarded. A preliminary estimation of the gas hazard has been made for the last 20 years considering the whole population of Greece. In this period at least 2 fatal episodes with a total of 3 victims could be certainly attributed to CO2. This would give a risk of 1.3·10-8 fatality per annum. Such value, probably underestimated, is much lower than most other natural or anthropogenic risks. Nevertheless this risk, being unevenly distributed along the whole territory, should not be overlooked and better constrained in areas with high density of gas manifestations and high soil gas fluxes

    Catalogue of the main gas manifestations in the Hellenic territory: a first step towards the estimation of the nationwide geogenic gas output

    Get PDF
    Quantification of gaseous emissions in geological systems is an important branch because it is a major source of greenhouse gas to the atmospheric budget. Of geological environments, there are two different categories: the first category includes emissions of the predominant carbon dioxide (CO2), while the second includes emissions of the predominant methane (CH4). The Hellenic territory has a very complex geodynamic setting deriving from a long and complicated geological history. It is strongly characterized by intense seismic activity and enhanced geothermal gradient. This activity, with the contribution of an active volcanic arc, favours the existence of many cold and thermal gas manifestations. Geogenic sources release huge amounts of gases, which, apart from having important influences on the global climate, could also have a strong impact on human health. Geochemical studies based on the isotopic composition of carbon and hydrogen, along with helium isotopic ratios have become a good indicator of the origin of the gas. The isotopic ratio 13C/12C of CO2 expressed in _ 13C (h, provides important information about the amount of CO2 released from the Earth’s crust or mantle. For methane, carbon and hydrogen isotopic compositions and C1/(C2+C3) hydrocarbon ratios can characterize the origin of methane: biogenic (thermogenic or microbial) or abiogenic. Helium isotopic ratios provide additional information about crustal or mantle origin of the gas. In the present work, a large set of chemical and isotopic data is presented aiming at the identification of areas with geogenic gas emissions and their characterization in terms of different gas composition and origin. The present catalogue should be the base for the estimation total nationwide geogenic CO2 and CH4 fluxes

    Carbon degassing through karst hydrosystems of Greece

    Get PDF
    Estimation of CO2 degassing from active tectonic structures and regional hydrothermal systems is essential for the quantification of presentday Earth degassing [Frondini et al., 2019 and references therein]. Due to the high solubility of CO2 in water, great amounts of deep inorganic carbon can be dissolved, transported, and released from regional aquifers. By applying a massbalance approach [Chiodini et al., 2000], different sources of the dissolved CO2 can be discriminated. The main source of degassing in Greece is concentrated in hydrothermal and volcanic areas. However, deep CO2 from active tectonic areas has not yet been quantified. A key point of this research is to investigate the possible deep CO2 degassing through the big karst aquifers of Greece. From May 2016, 156 karst springs were sampled along the greatest part of the Hellenic region. To discriminate the different carbon sources, we analyzed the chemical and isotopic composition of total dissolved inorganic carbon (TDIC). Results yield TDIC values from 1.89 to 21.7 mmol/l and δ13CTDIC from 16.61 to 0.91 ‰. On this basis, karst springs are clustered into two groups: (a) low TDIC and δ13CTDIC values and (b) intermediate TDIC and δ13CTDIC values. The carbon of the first group derives from organic source and dissolution of carbonates; whilst the second group shows a possible carbon input from deep source. This geogenic carbon is mostly related to high heat flux areas, often near active or recent (Quaternary) volcanic systems
    corecore